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DRAM in Safety Critical Automotive Systems  
This white paper discusses the evolution of functional safety and the approved approaches to achieve the requisite 
Automotive Safety Integrity Level (ASIL) as determined through the classification of potential system-level hazardous 
events with respect to their severity, probability of exposure and controllability by the driver. Starting from the prerequisite 
of an automotive grade quality level (QM, quality managed), the ISO 26262 standard recognizes several approaches to 
achieve the requisite ASIL. This paper provides a detailed comparison and discussion of the significant advantages of 
LPDDR memory with ASIL D certified ISO 26262 compliance. Micron leads the industry with the introduction of LPDDR4 
and LPDDR5 DRAM product families with ISO 26262 developed in full compliance to the most stringent ASIL D. 

The evolution of functional safety and ISO 26262 
To address the growing trend of safety-critical electronic control units (ECU) in automobiles, the International Organization 
for Standardization (ISO) published its first international standard for the functional safety of electrical and electronic 
systems installed in road vehicles in 2011: ISO 26262 titled “Road vehicles — Functional Safety.” The second edition was 
published in December 2018. It included a major addition relevant to semiconductor components: “Part 11 — Guidelines 
on application of ISO 26262 to semiconductors.” 

According to leading safety experts contributing to ISO 26262, one of the intents of the second edition was to guide the 
implementation of the ISO 26262 standards for semiconductors used in safety-critical automotive systems while providing 
a path for existing non-ASIL rated semiconductors to have a transitional phase. This is reinforced by the recommendation 
given in ISO 26262-2:2018, clause 6.4.12.2, which explicitly refers to current state-of-the-art solutions and domain 
knowledge: 

A functional safety assessment may be based on a judgement of whether the objectives of the ISO 26262 series 
of standards are achieved. NOTE: The achievement of an objective of the ISO 26262 series of standards is 
judged considering the corresponding requirements of these standards, the state-of-the-art regarding technical 
solutions and the applicable engineering domain knowledge, at the time of the development.1 

Safety approach 
Automotive functional safety compliance is essentially achieved by demonstrating that the system is free from 
unacceptable risk: Functional safety is the “absence of unreasonable risk ... due to hazards … caused by malfunctioning 
behavior … of electrical and electronic (E/E) systems …” 1 Although it is acknowledged that not all risks can be eliminated 
from an E/E system, following the implementation guidelines of the ISO 26262 standard should lead to a lower residual 
risk level. The more rigorously an original equipment manufacturer (OEM) or a tier one supplier implements its E/E 
systems following the ISO 26262 standards, the better it can demonstrate that the residual risk of harming people is 
minimized. 

Two major failure categories are identified by the standard as part of the functional safety assessment of semiconductors 
in general and dynamic random-access memory (DRAM) specifically: 

Systematic failures — which the ISO 26262 defines as a “failure related in a deterministic way to a certain cause, that can 
only be eliminated by a change of the design or of the manufacturing process, operational procedures, documentation or 
other relevant factors.” 1 

Random hardware failures — which are “failures that can occur unpredictably during the lifetime of a hardware element, 
and that follow a probability distribution.” 1 

 

The next sections of this paper will look at systematic failures first, followed by random hardware failures. 
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Part 1: Systematic failures 
Risk mitigation for systematic failures is performed by implementing additional steps in the development process of 
semiconductors. These steps are described in ISO 26262 and consist of: 

• Educational measures (train staff on ISO 26262)  
• Organizational measures (e.g., dedicated safety office, external or internal safety certification)  
• Additional documentation and requirements review  

Each safety integrity level requires adopting additional best practices in the product development process. ASIL D is 
currently the highest, most comprehensive and most stringent level of certification for functional safety. While a fully ISO 
26262 compliant component enables its integration in the system targeting the most stringent safety integrity levels, the 
ISO 26262 standard offers three alternative approaches to argue for a significantly reduced risk level for systematic 
failures: 

• Evaluation of quality management hardware (QM HW) elements (ISO 26262-8:2018, clause 13) 
• Proven-in-use of QM HW elements (ISO 26262-8:2018, clause 14) 
• ASIL decomposition – DRAM: QM(x) / Host: ASIL x(x) (ISO 26262-9:2018, clause 5) 

These alternative approaches enable products not originally developed expressly for safety-critical automotive systems to 
achieve the required ASIL systematic capability. In ISO 26262 nomenclature, such components are called QM 
components. QM stands for quality management and indicates that these products have been developed following 
standard automotive quality management processes such as IATF 16949, AEC Q100/004.  

Table 1 compares the ISO 26262 standard approaches (ASIL Rated column) with the three methods mentioned above, 
providing detailed arguments. 

 ASIL Rated 
ISO 26262:2018 

HW-Evaluation (QM) 
ISO 26262-8:2018, clause 13 

Proven in Use (QM) 
ISO 26262-8:2018, clause 14 

ASIL Decomposition (QM) 
ISO 26262-9:2018, clause 5 
QM(x)/ASIL x(x) with x=A,B,C,D 

Effectiveness of  
Safety Solution Very High ● Medium ● 

Low 
Valid with mitigation strategy. 
Need to manage risks in 
case of excursion 

● Medium ● 

System Availability High 
Aims for fault avoidance ● High 

Aims for fault avoidance ● High 
Aims for fault avoidance ● Low 

Aims for fault detection ● 

Effort for Memory 
Supplier High ● Low ● Medium ● Low ● 

Effort for Memory 
Integrator Low ● 

High 
According to ISO 26262 
integrator ownership 

● Low ● 
Medium 
Additional measures in other 
parts of the system and 
independence to be proven  

● 

Solution Cost       
Potentially increased 
Due to redundancy in other 
parts of the system 

● 

Sustainability 
(Long Term) Yes ● 

No 
For class III complexity 
elements, acceptable as a 
transitional approach only  

● 
No 
Mostly intended for legacy 
products 

● Yes ● 

Table 1: Comparison of options for systematic capability argumentation 

Definitions:  
Effectiveness of Safety Solution: Summarizes the rigor of the safety assessment.  
System Availability: Compares if the safety argumentation is to avoid systematic failures or simply to detect them when they occur. 
Effort for Memory Integrator: The level of effort required by the integrator to demonstrate compliance. 
Solution Cost: Evaluates if the approach leads to additional cost, for example through duplicated resources, which may include memory. 
Sustainability: Evaluates if the same safety approach can be carried forward to the next generation of products. 
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Hardware evaluated QM 
In the process of “evaluation of hardware elements,” an already developed QM component is assessed for its suitability in 
a safety application. Specifically, “an argument that the risk of a violation of a safety goal or the risk of a violation of a 
safety requirement due to systematic faults is sufficiently low”1 needs to be provided. The hardware evaluation needs to 
be done thoroughly and in-depth. First, an evaluation plan is developed. After this, the evaluation is executed by analyzing 
existing documentation such as verification and qualification reports, field return data, existing failure mode effects 
analysis (FMEA) and by executing new additional tests to verify the robustness of the hardware element. All of these 
steps are documented in an evaluation report.  

Additionally, initiating the hardware evaluation process includes ensuring the hardware element is classified as one of 
three complexity classes: class I, class II or class III. ISO 26262-8, clause 13.4.1.1 provides examples for different 
components: 

A) Class I: Resistor, capacitor, transistor, diode, quartz, resonator 

B) Class II: Fuel pressure sensor, temperature sensor, stand-alone analog-digital converter (ADC)  

C) Class III: Microprocessor, microcontroller, digital signal processor (DSP) 

Because DRAM is not explicitly mentioned in the examples given above, further review of the classification criteria 
provided in ISO 26262 is needed. Table 2 lists the criteria and the assessment of each criterion for LPDDR4 and LPDDR5 
DRAM products. 

Classification Criteria Class I Class II Class III Comment 

How many internal states (i.e., 
registers, operating modes, state 
machine states, etc.) does the HW 
element have? 

 
Very few 
(e.g., ≤ 4)  Few  Many 

Many mode and pipeline registers, 
complex state machines for 
internal data and control flows 

Can all internal states be tested and 
analyzed without knowledge of 
implementation details? 

 Yes    No 
Not possible to analyze internal 
states/flows w/o implementation 
knowledge 

Can all failure modes be identified, 
understood and analyzed without 
knowledge of the design, 
implementation and production 
process? 

 Yes  

Yes 
(with available 
documentation 
and confirmed 
assumptions) 

 No 

Internal failure modes cannot be 
identified w/o knowledge of the 
design. Even top-level failure 
modes are difficult to identify  

Does the HW element have internal 
safety mechanisms which are relevant 
for the safety concept? 

     No 
On-die ECC is relevant for the 
safety concept and shall be 
treated as a safety measure 

Table 2: LPDDR4/LPDDR5 DRAM classification according to the criteria of ISO 26262-8, clause 13.4.1.1 — Source: exida 

As defined by ISO 26262, there is a specific set of criteria that is used to establish the classification of a hardware 
element. The classification typically reflects the complexity of the given device. As an example, a very complex 
semiconductor device — such as a system on a chip (SoC) — is rated as a class III hardware element, whereas a more 
simplistic device, such as a resistor, would be rated as a class I hardware element. As shown in the table above, as the 
complexity of the device increases, there is a corresponding increasing challenge to identify possible failure modes due to 
the limited observability of hidden or buried nodes. When reviewing this criterion for a memory device, the identified items 
in the table above that are checked reflect challenges that directly apply to these devices, and hence, memory modules, 
which have historically been characterized as class II hardware elements, should now be treated as class III hardware 
elements. As such, appropriate considerations must be made when designing safety solutions. 

Note that ISO 26262 discourages hardware evaluation of class III components: Class III hardware elements should be 
developed in compliance with ISO 26262 and only permits hardware evaluation as an exceptional case for a transitional 
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period: … the “evaluation of class III elements” is not the preferred approach and therefore the next version of the 
hardware element is planned to be developed in compliance with ISO 26262.1 

Hardware evaluation provides a lower level of safety assurance for DRAM versus a fully ISO 26262 ASIL D compliant 
component. Based upon Micron customers’ and partners’ feedback, it can take up to 12 months of multiple individuals’ 
time and effort on the system integrator side for a hardware evaluation to be executed with the appropriate rigor.  

This assumes a close interaction between the component supplier and integrator: while the integrator knows the details of 
its system, only the supplier has the in-depth knowledge about the functionality and failure modes of the component and 
the documentation of the verification and review steps performed during its development. 

In addition, class III hardware evaluation is, per ISO 26262 requirements, not a sustainable solution for successive 
generations of products. 

Proven-in-use of QM hardware 
The proven-in-use argumentation can be applied to products that are in the field already in adjacent non-safety 
applications with similar use conditions. The idea is to show that the product is in use in high quantities without any 
issues. ISO 26262-8:2018, clause 14, provides the key performance indicators (KPIs) for incidence rates and the required 
observation periods for the different ASILs. This method may present an issue in terms of the accuracy of the evaluation: 
indeed, it requires a high level of market saturation, which translates to about five million components being in the field, 
and it could take 4-6 years to achieve an ASIL D compliance through a proven-in-use argument.  

Considering possible delays in the supply chain, shipped volumes and operating hours, the proven-in-use approach 
provides a lower level of safety assurance and is not recommended as a sustainable approach. It should be applied only 
in exceptional cases for legacy products.  

ASIL decomposition 
The third approach to argue for systematic capability of a system using QM-grade DRAM is ASIL decomposition. ASIL 
decomposition is described in ISO 26262-9:2018, clause 5, and is widely used on system-level components and for 
software to decompose original high ASIL requirements into redundant requirements allocated to the intended 
functionality and to a checker4 (i.e., additional hardware that validates proper operation of the device and overall system). 
Its principles can, however, also be applied to components. In simple terms, ASIL decomposition is a structured way of 
adding redundancy to the system with the goal of reducing the required ASIL for parts of the system: possible systematic 
issues of the reduced ASIL parts of the system will still be detected through the added redundancy. ISO 26262 specifies 
which combinations are feasible. In the case of a QM DRAM component in an ASIL D system, the following 
decomposition concept can be applied: 

ASIL D = ASIL D(D) + QM(D) 

A practical implementation could be that a checker is added to an ASIL D(D) host system on a chip (SoC) that can detect 
all possible systematic issues that the QM DRAM component (QM(D)) could have. Special efforts are required as part of 
the ASIL decomposition process to prove the technical independency between the decomposed elements. They shall not 
be affected by: 

a) common cause failures (e.g., failures in common power supplies, clocks, or common design); and 
b) cascading failures from one element to the redundant one (also known as freedom from interference) 

The drawback to this approach is that the DRAM component is still QM, and it can fail because of a safety-critical 
systematic issue (not prevented/minimized as in ISO 26262 compliant developments). The host checker would detect this 
failure and take the necessary actions to go to a safe state. A vehicle with ADAS features would disengage those features 
and hand control back to the driver, whereas an autonomous driving vehicle would most likely cripple the vehicle taking it 
off to the side of the road or some defined safe state. In conclusion, the systematic failure of the QM component can 
directly impact system availability, while the availability of a component with an ASIL systematic compliance (ASIL D 
being the best) is typically very high. Moreover, the added redundancy on the host side, associated with a solution that is 
used to cope with possible systematic issues of the QM component can typically lead to additional system cost.  
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Part 2: Random hardware failure analysis 
In the previous paragraphs, we discussed the value of an ISO 26262 certified DRAM component versus the alternative 
approaches for a systematic fault safety argumentation for QM components. This section will now look at the random 
hardware failure analysis in more detail. As stated earlier in this paper, random hardware failures occur unpredictably over 
the useful lifetime of the product and are of a probabilistic nature. These failures can happen in hardware even if there 
have been no flaws in the development and production of the component and potentially as a result of various reasons 
that are entirely beyond the control of the developer and manufacturer. Figure 1 shows the component failure rate over 
time — the so-called bathtub curve. 

 
Figure 1: Component failure rate over time 

The analysis of random hardware failures of DRAM components encompasses failures of the die and the package during 
the useful life of the product (solid area under blue line of the bathtub chart above), as well as those induced by particle 
hits (solid area under green line). Particle hits are caused by neutron strikes from cosmic radiation or alpha particles from 
the package material. Random hardware failures are measured in failures in time (FIT). One FIT is equal to one failure 
occurring in 109 operating device-hours (JESD85): it means, for example, 1 failure in 1 billion operating hours for a single 
component, or 1 failure in 1 million operating hours for 1000 components.  

As part of the safety analysis of the LPDDR DRAM products, a thorough analysis of both types of random hardware 
failures has been conducted across sub-parts of the DRAM component. It was allowed to identify potential failure modes, 
their effects, and consequently develop a technical safety concept that addresses avoiding or detecting random hardware 
failures to reach the ASIL D hardware metrics. Table 3 lists the hardware metrics required by ISO 26262 for the different 
ASIL. 
 

ASIL PMHF SPFM LFM   
A N/A N/A N/A   
B <100FIT ≥90% ≥60%   
C <100 FIT ≥97% ≥80%   
D <10 FIT ≥99% ≥90%   

Table 3: ISO 26262 metric targets for random hardware failures 

Definitions: 
PMHF: Probabilistic metric for random hardware failures 
SPFM: Single-point fault metric 
LFM: Latent fault metric 
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More detailed definitions of these metrics can be found in ISO 26262-5:2018, clause 8 (Evaluation of the hardware 
architectural metrics). It should be noted that the target hardware KPIs are specified for the whole system — for example, 
a complete electronic control unit (ECU). While SPFM and LFM are relative metrics, so that the target values can be 
directly assigned to the DRAM component, PMHF is an absolute metric (representing the residual FIT rate, after all 
avoidance and detection measures are applied). Consequently, only a small portion of the overall FIT budget of the 
system can be allocated to the DRAM component, with the assumption that a low single-digit percent of the overall budget 
— which corresponds to an equally low FIT in ASIL D systems — can be allocated to the DRAM. 

Random hardware failures require the adoption of so-called “safety measures for risk mitigation” and a quantitative 
analysis methodology to estimate their effectiveness. Two possible methods that can be used here are quantitative fault 
tree analysis (FTA) and failure mode, effects and diagnostics analysis (FMEDA). FTA is a top-down analysis, which maps 
the relationship between faults, subsystems, and redundant safety design elements by creating a logic diagram of the 
overall system. The undesired outcome is taken as the root (top event) of a tree of logic. 

FMEDA 
FMEDA is a bottom-up analysis, and it is a methodology extension of the classical qualitative FMEA that quantifies and 
assigns FIT rates to failure modes. As the starting point, the base failure rate needs to be calculated for the die and for the 
package: for the permanent faults base failure rate estimation, Micron uses a handbook approach based on IEC/TR 
62380: after this handbook withdrawal by IEC (just before publication of ISO 26262:2018), it has been taken over by ISO 
26262 (ISO 26262-11:2018, clause 4.6.2.1.1). The other handbook (commonly used for semiconductor products), the SN 
29500 (ISO 26262-11:2018, clause 4.6.2.1.2), is quite old and difficult to apply to Micron memory product portfolios: 
current densities are well beyond what the handbook supports. The alternative to the handbook-based approach would be 
to determine the base failure rate referring to qualification data: it has been observed that this would lead to unreliable and 
incomparable results.  

The base failure rate (BFR) calculator requires several inputs, in particular the mission profile. Micron uses as a reference 
the passenger compartment profile defined in ISO 26262, but it also supports customer-specific analysis based on 
different mission profiles.  

The base failure rate for transient fault events (due to neutron and alpha particles) are quantified via experiments. For 
neutron FIT is typically referenced to New York, sea level altitude. 

As the next step in the FMEDA, the base FIT is distributed to each functional block in the DRAM architecture by using the 
respective gate count as a reference. Figure 2 depicts a high-level view of an LPDDR DRAM architecture. Despite the 
largest portion of FIT being allocated to the memory array, a significant portion is also allocated to the periphery such as 
global I/O, command and address decode, row and column decode, input and output buffers, the on-chip error correction 
code (ECC) and so on. 

 
Figure 2: High-level LPDDR DRAM architecture diagram 
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Each block is then analyzed for how it can fail, identifying which failure modes are possible. FIT distribution to the block 
level failure modes is done by engineering judgement. Eventually, to make it easier for our customers, we aggregate all 
individual block-level failure modes up to a small set of top-level failure modes (TLFM) that the host would experience in 
case a low-level failure occurs. The identified TLFM can be found in Table 4. 
 

ID Description Comment Critical FIT Failure Type 
TLFM-01 Corrupt data: Single-bit error (SBE) Single corrupted bit in one or multiple words ~70% SBE 
TLFM-02 Corrupt data: Double-bit error (DBE) Two corrupted bits in one or multiple words 

~30% 

DBE 
TLFM-03 Corrupt data: Multiple-bit error (MBE) Multiple corrupted bits or random data vector MBE 
TLFM-04 Corrupt data: Continuous MBE (CMBE) Repeated MBE for many/every read access MBE 
TLFM-05 Wrong data Data read from wrong address Address 
TLFM-06 Lost data/old data No data written; old data at this address Address 
TLFM-07 No data driven during read operation Termination pulls data to VSS; all-0 received MBE 
TLFM-08 DQ bus disturbance Leading to MBE on the shared DQ bus MBE 

Table 4: DRAM top-level failure modes (TLFMs) 

There are eight distinct TLFMs that can be grouped into three main failure mode types:  

• Single-bit errors (TLFM-01) 
• Multi-bit errors (TLFM-02, -03, -04, -07, -08)  
• Addressing errors (TLFM-05, -06)5, 6  

For LPDDR DRAM, a significant percentage of the safety critical FIT budget is allocated to single-bit errors that a standard 
ECC can easily cover on DRAM or on the host side, but the remaining percentage of the FIT are more difficult to detect 
because they are multi-bit and addressing errors (failure type in red in Table 4). 

Note that all failure modes are single-point fault failures which means, for example, that a single fault event causes 
multiple bits in a read burst to be wrong (MBE failure type). Because of the significant allocation to MBE and addressing 
failure types, we found that a standard JEDEC LPDDR DRAM with commonly used host inline ECC schemes (e.g., 64+8 
single error correction, double error detection (SEC-DED)) is not able to reach even the ASIL B hardware KPIs shown in 
Table 3. This finding has recently also been confirmed independently by a team of researchers from TU Kaiserslautern, 
Fraunhofer Institute and Mercedes-Benz using a different analysis methodology — fault tree analysis (FTA) instead of 
FMEDA.7 The issue is the mediocre detection capability of traditional ECC schemes for multi-bit and addressing errors.8 

Micron ASIL D ISO 26262 certified LPDDR5 memory 
In June 2022, Micron achieved ASIL D certification for its LPDDR5/5X3 memory. The certificates issued by the 
independent assessor company exida for Micron’s “Functional Safety Management Process for SDRAM IC Hardware 
Development”9 as well as the industry’s first ASIL D product certification “Micron Y4BM LPDDR5 SDRAM”3 can be 
downloaded from the exida certificate database. Additional detail is provided in the extensive Assessment Reports of the 
conducted process as well as product certifications. Micron’s ASIL D certificate can be seen in Figure 3. 

Leveraging the above process capability, Micron is progressively populating its automotive LPDDR SDRAM portfolio with 
new ISO 26262 compliant product families, including also LPDDR4/4X.   
 

https://www.exida.com/SAEL-Safety/micron-technology-inc.-fsm-process-for-sdram-ic-hardware-development
https://www.exida.com/SAEL-Safety/micron-technology-inc.-fsm-process-for-sdram-ic-hardware-development
https://www.exida.com/SAEL-Safety/Micron-Technology-Inc.-Micron-Y4BM-LPDDR5-SDRAM
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Figure 3: ASIL D Certificate Micron LPDDR5/5X DRAM 

These are publicly available documents from exida, and Micron delivers the following safety related documents to its 
customers: 

• Safety Manual — Summarizes the safety concepts and use scenarios 
• Safety Analysis Report — Summarizes the results of the FMEDA analysis 
• Pin FMEDA — Helps our customers to analyze failure modes on the PCB level 
• Functional Safety Assessment Report — Provides details on how ISO 26262 compliance has been achieved  

Customers might need to use parameters different than the default assumptions in our random hardware failure analysis 
(FMEDA). This could be related to different use conditions (operating hours, temperature profiles, altitudes) or different 
safety mechanisms used on the host or system level. In this case, and on a case-by-case basis, we can offer tailored 
FMEDAs and supply custom Safety Analysis reports based on the concrete requirements of our customers.  
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Summary 
IC vendors are developing solutions to meet the ISO 26262 standard for “Road vehicle — Functional safety.” Based on 
quality managed (QM) products, there are several recognized approaches by the ISO 26262 standard to achieve the 
required ASIL. Micron reaffirms its commitment to the automotive market by ensuring that state-of-the-art components, 
processes and methodologies are used in the development of such systems and in our memory components. This 
commitment requires the mitigation of systematic issues as well as controlling random hardware failures. Micron leads the 
industry with the introduction of LPDDR4 and LPDDR5 DRAM product families developed in full compliance with ISO 
26262 requirements to meet ASIL D, the most stringent integrity level.  
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